Pauli Matrices - Algebraic Properties

Algebraic Properties


\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = -i\sigma_1 \sigma_2 \sigma_3 = \begin{pmatrix} 1&0\\0&1\end{pmatrix} = I

where I is the identity matrix, i.e. the matrices are involutory.

  • The determinants and traces of the Pauli matrices are:

From above we can deduce that the eigenvalues of each σi are ±1.

  • Together with the identity matrix I (which is sometimes written as σ0), the Pauli matrices form an orthogonal basis, in the sense of Hilbert–Schmidt, for the real Hilbert space of 2 × 2 complex Hermitian matrices, or the complex Hilbert space of all 2 × 2 matrices.

Read more about this topic:  Pauli Matrices

Famous quotes containing the words algebraic and/or properties:

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)