Fundamental Groupoid
There is a categorical picture of paths which is sometimes useful. Any topological space X gives rise to a category where the objects are the points of X and the morphisms are the homotopy classes of paths. Since any morphism in this category is an isomorphism this category is a groupoid, called the fundamental groupoid of X. Loops in this category are the endomorphisms (all of which are actually automorphisms). The automorphism group of a point x0 in X is just the fundamental group based at X. More generally, one can define the fundamental groupoid on any subset A of X, using homotopy classes of paths joining points of A. This is convenient for the Van Kampen's Theorem.
Read more about this topic: Path (topology)
Famous quotes containing the word fundamental:
“When we walk the streets at night in safety, it does not strike us that this might be otherwise. This habit of feeling safe has become second nature, and we do not reflect on just how this is due solely to the working of special institutions. Commonplace thinking often has the impression that force holds the state together, but in fact its only bond is the fundamental sense of order which everybody possesses.”
—Georg Wilhelm Friedrich Hegel (17701831)