In abstract algebra, a partially ordered group is a group (G,+) equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if a ≤ b then a+g ≤ b+g and g+a ≤ g+b.
An element x of G is called positive element if 0 ≤ x. The set of elements 0 ≤ x is often denoted with G+, and it is called the positive cone of G. So we have a ≤ b if and only if -a+b ∈ G+.
By the definition, we can reduce the partial order to a monadic property: a ≤ b if and only if 0 ≤ -a+b.
For the general group G, the existence of a positive cone specifies an order on G. A group G is a partially ordered group if and only if there exists a subset H (which is G+) of G such that:
- 0 ∈ H
- if a ∈ H and b ∈ H then a+b ∈ H
- if a ∈ H then -x+a+x ∈ H for each x of G
- if a ∈ H and -a ∈ H then a=0
A partially ordered group G with positive cone G+ is said to be unperforated if n · g ∈ G+ for some natural number n implies g ∈ G+. Being unperforated means there is no "gap" in the positive cone G+.
If the order on the group is a linear order, then it is said to be a linearly ordered group. If the order on the group is a lattice order, i.e. any two elements have a least upper bound, then it is a lattice-ordered group.
A Riesz group is a unperforated partially ordered group with a property slightly weaker than being a lattice ordered group. Namely, a Riesz group satisfies the Riesz interpolation property: if x1, x2, y1, y2 are elements of G and xi ≤ yj, then there exists z ∈ G such that xi ≤ z ≤ yj.
If G and H are two partially ordered groups, a map from G to H is a morphism of partially ordered groups if it is both a group homomorphism and a monotonic function. The partially ordered groups, together with this notion of morphism, form a category.
Partially ordered groups are used in the definition of valuations of fields.
Read more about Partially Ordered Group: Examples
Famous quotes containing the words partially, ordered and/or group:
“Let us consider that we are all partially insane. It will explain us to each other; it will unriddle many riddles; it will make clear and simple many things which are involved in haunting and harassing difficulties and obscurities now.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)
“Then he rang the bell and ordered a ham sandwich. When the maid placed the plate on the table, he deliberately looked away but as soon as the door had shut, he grabbed the sandwich with both hands, immediately soiled his fingers and chin with the hanging margin of fat and, grunting greedily, began to much.”
—Vladimir Nabokov (18991977)
“Laughing at someone else is an excellent way of learning how to laugh at oneself; and questioning what seem to be the absurd beliefs of another group is a good way of recognizing the potential absurdity of many of ones own cherished beliefs.”
—Gore Vidal (b. 1925)