Partial Trace - Details

Details

Suppose V, W are finite-dimensional vector spaces over a field, with dimensions m and n, respectively. For any space A let L(A) denote the space of linear operators on A. The partial trace over W, TrW, is a mapping

It is defined as follows: let

and

be bases for V and W respectively; then T has a matrix representation

relative to the basis

of

.

Now for indices k, i in the range 1, ..., m, consider the sum

This gives a matrix bk, i. The associated linear operator on V is independent of the choice of bases and is by definition the partial trace.

Among physicists, this is often called "tracing out" or "tracing over" W to leave only an operator on V in the context where W and V are Hilbert spaces associated with quantum systems (see below).

Read more about this topic:  Partial Trace

Famous quotes containing the word details:

    There was a time when the average reader read a novel simply for the moral he could get out of it, and however naïve that may have been, it was a good deal less naïve than some of the limited objectives he has now. Today novels are considered to be entirely concerned with the social or economic or psychological forces that they will by necessity exhibit, or with those details of daily life that are for the good novelist only means to some deeper end.
    Flannery O’Connor (1925–1964)