Parsing - Human Languages

Human Languages

See also: Category:Natural language parsing

In some machine translation and natural language processing systems, human languages are parsed by computer programs. Human sentences are not easily parsed by programs, as there is substantial ambiguity in the structure of human language, whose usage is to convey meaning (or semantics) amongst a potentially unlimited range of possibilities but only some of which are germane to the particular case. So an utterance "Man bites dog" versus "Dog bites man" is definite on one detail but in another language might appear as "Man dog bites" with a reliance on the larger context to distinguish between those two possibilities, if indeed that difference was of concern. It is difficult to prepare formal rules to describe informal behaviour even though it is clear that some rules are being followed.

In order to parse natural language data, researchers must first agree on the grammar to be used. The choice of syntax is affected by both linguistic and computational concerns; for instance some parsing systems use lexical functional grammar, but in general, parsing for grammars of this type is known to be NP-complete. Head-driven phrase structure grammar is another linguistic formalism which has been popular in the parsing community, but other research efforts have focused on less complex formalisms such as the one used in the Penn Treebank. Shallow parsing aims to find only the boundaries of major constituents such as noun phrases. Another popular strategy for avoiding linguistic controversy is dependency grammar parsing.

Most modern parsers are at least partly statistical; that is, they rely on a corpus of training data which has already been annotated (parsed by hand). This approach allows the system to gather information about the frequency with which various constructions occur in specific contexts. (See machine learning.) Approaches which have been used include straightforward PCFGs (probabilistic context-free grammars), maximum entropy, and neural nets. Most of the more successful systems use lexical statistics (that is, they consider the identities of the words involved, as well as their part of speech). However such systems are vulnerable to overfitting and require some kind of smoothing to be effective.

Parsing algorithms for natural language cannot rely on the grammar having 'nice' properties as with manually designed grammars for programming languages. As mentioned earlier some grammar formalisms are very difficult to parse computationally; in general, even if the desired structure is not context-free, some kind of context-free approximation to the grammar is used to perform a first pass. Algorithms which use context-free grammars often rely on some variant of the CKY algorithm, usually with some heuristic to prune away unlikely analyses to save time. (See chart parsing.) However some systems trade speed for accuracy using, e.g., linear-time versions of the shift-reduce algorithm. A somewhat recent development has been parse reranking in which the parser proposes some large number of analyses, and a more complex system selects the best option.

Read more about this topic:  Parsing

Famous quotes containing the words human and/or languages:

    A dramatist is one who believes that the pure event, an action involving human beings, is more arresting than any comment that can be made upon it.
    Thornton Wilder (1897–1975)

    I am always sorry when any language is lost, because languages are the pedigree of nations.
    Samuel Johnson (1709–1784)