Parallelogram Law - The Parallelogram Law in Inner Product Spaces

The Parallelogram Law in Inner Product Spaces

In a normed space, the statement of the parallelogram law is an equation relating norms:

In an inner product space, the norm is determined using the inner product:

As a consequence of this definition, in an inner product space the parallelogram law is an algebraic identity, readily established using the properties of the inner product:

Adding these two expressions:

as required.

If x is orthogonal to y, then and the above equation for the norm of a sum becomes:

which is Pythagoras' theorem.

Read more about this topic:  Parallelogram Law

Famous quotes containing the words law, product and/or spaces:

    They are the lovers of law and order who observe the law when the government breaks it.
    Henry David Thoreau (1817–1862)

    Good is a product of the ethical and spiritual artistry of individuals; it cannot be mass-produced.
    Aldous Huxley (1894–1963)

    Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.
    Jean Baudrillard (b. 1929)