Osteogenesis Imperfecta

Osteogenesis imperfecta (OI and sometimes known as brittle bone disease, or "Lobstein syndrome") is a genetic bone disorder. People with OI are born with defective connective tissue, or without the ability to make it, usually because of a deficiency of Type-I collagen. This deficiency arises from an amino acid substitution of glycine to bulkier amino acids in the collagen triple helix structure. The larger amino acid side-chains create steric hindrance that creates a bulge in the collagen complex, which in turn influences both the molecular nanomechanics as well as the interaction between molecules, which are both compromised. As a result, the body may respond by hydrolyzing the improper collagen structure. If the body does not destroy the improper collagen, the relationship between the collagen fibrils and hydroxyapatite crystals to form bone is altered, causing brittleness. Another suggested disease mechanism is that the stress state within collagen fibrils is altered at the locations of mutations, where locally larger shear forces lead to rapid failure of fibrils even at moderate loads as the homogeneous stress state found in healthy collagen fibrils is lost. These recent works suggest that OI must be understood as a multi-scale phenomenon, which involves mechanisms at the genetic, nano-, micro- and macro-level of tissues.

As a genetic disorder, OI has historically been viewed as an autosomal dominant disorder of type I collagen. In the past several years, there has been the identification of autosomal recessive forms. Most people with OI receive it from a parent but in 35% of cases it is an individual (de novo or "sporadic") mutation.

Read more about Osteogenesis Imperfecta:  Types, Treatment, History, Epidemiology, Noted Cases, In Media