Definition For 1-variable Case For A Real Measure
Given any non-decreasing function α on the real numbers, we can define the Lebesgue–Stieltjes integral
of a function f. If this integral is finite for all polynomials f, we can define an inner product on pairs of polynomials f and g by
This operation is a positive semidefinite inner product on the vector space of all polynomials, and is positive definite if the function α has an infinite number of points of growth. It induces a notion of orthogonality in the usual way, namely that two polynomials are orthogonal if their inner product is zero.
Then the sequence (Pn)n=0∞ of orthogonal polynomials is defined by the relations
In other words, obtained from the sequence of monomials 1, x, x2, ... by the Gram–Schmidt process.
Usually the sequence is required to be orthonormal, namely,
however, other normalisations are sometimes used.
Read more about this topic: Orthogonal Polynomials
Famous quotes containing the words definition, case, real and/or measure:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“The case of Andrews is really a very bad one, as appears by the record already before me. Yet before receiving this I had ordered his punishment commuted to imprisonment ... and had so telegraphed. I did this, not on any merit in the case, but because I am trying to evade the butchering business lately.”
—Abraham Lincoln (18091865)
“Whether our feet are compressed in iron shoes, our faces hidden with veils and masks; whether yoked with cows to draw the plow through its furrows, or classed with idiots, lunatics and criminals in the laws and constitutions of the State, the principle is the same; for the humiliations of the spirit are as real as the visible badges of servitude.”
—Elizabeth Cady Stanton (18151902)
“In abnormal times like our own, when institutions are changing rapidly in several directions at once and the traditional framework of society has broken down, it becomes more and more difficult to measure any type of behavior against any other.”
—John Dos Passos (18961970)