Omitted-variable Bias

In statistics, omitted-variable bias (OVB) occurs when a model is created which incorrectly leaves out one or more important causal factors. The 'bias' is created when the model compensates for the missing factor by over- or underestimating one of the other factors.

More specifically, OVB is the bias that appears in the estimates of parameters in a regression analysis, when the assumed specification is incorrect, in that it omits an independent variable (possibly non-delineated) that should be in the model.

Read more about Omitted-variable Bias:  Omitted-variable Bias in Linear Regression, Effects On Ordinary Least Square

Famous quotes containing the word bias:

    The solar system has no anxiety about its reputation, and the credit of truth and honesty is as safe; nor have I any fear that a skeptical bias can be given by leaning hard on the sides of fate, of practical power, or of trade, which the doctrine of Faith cannot down-weigh.
    Ralph Waldo Emerson (1803–1882)