Temperature Effects
Ohm's law has sometimes been stated as, "for a conductor in a given state, the electromotive force is proportional to the current produced." That is, that the resistance, the ratio of the applied electromotive force (or voltage) to the current, "does not vary with the current strength ." The qualifier "in a given state" is usually interpreted as meaning "at a constant temperature," since the resistivity of materials is usually temperature dependent. Because the conduction of current is related to Joule heating of the conducting body, according to Joule's first law, the temperature of a conducting body may change when it carries a current. The dependence of resistance on temperature therefore makes resistance depend upon the current in a typical experimental setup, making the law in this form difficult to directly verify. Maxwell and others worked out several methods to test the law experimentally in 1876, controlling for heating effects.
Read more about this topic: Ohm's Law
Famous quotes containing the words temperature and/or effects:
“This pond never breaks up so soon as the others in this neighborhood, on account both of its greater depth and its having no stream passing through it to melt or wear away the ice.... It indicates better than any water hereabouts the absolute progress of the season, being least affected by transient changes of temperature. A severe cold of a few days duration in March may very much retard the opening of the former ponds, while the temperature of Walden increases almost uninterruptedly.”
—Henry David Thoreau (18171862)
“Upon the whole, necessity is something, that exists in the mind, not in objects; nor is it possible for us ever to form the most distant idea of it, considerd as a quality in bodies. Either we have no idea of necessity, or necessity is nothing but that determination of thought to pass from cause to effects and effects to causes, according to their experiencd union.”
—David Hume (17111776)