Oak Ridge National Laboratory - History


The town of Oak Ridge was established by the Army Corps of Engineers as part of the Clinton Engineer Works in 1942 on isolated farm land as part of the Manhattan Project. In 1943 the "Clinton Laboratories" were completed, later renamed to the Oak Ridge National Laboratory. The site was chosen for the X-10 Graphite Reactor, used to show that plutonium can be extracted from enriched uranium. Enrico Fermi and his colleagues developed the world's second self-sustaining nuclear reactor after Fermi's previous experiment Chicago Pile-1, the X-10 was the first designed for continuous operation. After the end of World War II the demand for weapons-grade plutonium fell and the reactor and the laboratory's 1000 employees were no longer involved in nuclear weapons, instead it was used for scientific research. In 1946 the first medical isotopes were produced in the X-10 reactor, by 1950 almost 20,000 samples had been shipped to various hospitals. As the demand for military science had fallen dramatically the future of the lab was uncertain. Management of the lab was contracted by the US government to Monsanto, however, they withdrew in 1947. The University of Chicago assumed responsibility but withdrew shortly after, until in December 1947 Union Carbide and Carbon Co., which already operated two other facilities at Oak Ridge, took control of the laboratory and Alvin Weinberg was named Director of Research ORNL, and in 1955 Director of the Laboratory.

In 1950 the Oak Ridge School of Reactor Technology was established with two courses in reactor operation and safety; almost 1000 students graduated. Much of the research performed at ORNL in the 1950s was relating to nuclear reactors as a form of energy production both for propulsion and electricity; more reactors were built in the 1950s than the rest of the ORNL's history combined. Through experiment X-10 was the first light water reactor, the most common type of nuclear reactor as of 2012. The US Military funded much of the reactor development leading to the nuclear powered submarines and ships of the US Navy. The US Army contracted portable nuclear reactors in 1953 for heat and electricity generation in remote military bases. The reactors were designed at ORNL, produced by American Locomotive Company and used in Greenland, the Panama Canal Zone and Antarctica. The US Airforce also contributed funding to 3 reactors, the lab's first computers and its first particle accelerators. ORNL designed and tested a nuclear powered air craft in 1954 intended to be used by the Air Force in a fleet of long range bombers although the plane never flew. The provision of radionuclides by X-10 for medicine grew steadily in the 1950s with more isotopes available; ORNL was the only Western source of californium-252. ORNL scientists lowered the immune systems of mice and performed the world's first successful bone marrow transplant.

In the early 1960s there was a large push at ORNL for nuclear powered desalination plants where deserts met the sea to provide water. The project called Water for Peace was backed by John F. Kennedy and Lyndon B. Johnson and presented at a 1964 United Nations conference but increases in the cost of construction and public confidence in nuclear power falling caused the plan to fail. The Health Physics Research Reactor built in 1962 was used for radiation exposure experiments leading to more accurate dosage limits, dosimeters and improved radiation shielding. In 1964 the Molten-Salt Reactor Experiment began with the construction of the reactor. It was operated from 1966 until 1969 (with six months down time to move from U-235 to U-233 fuel) and proved the viability of molten salt reactors while also producing fuel for other reactors as a byproduct of its own reaction. The High Flux Isotope Reactor built in 1965 with the highest neutron flux of any reactor at the time. It improved upon the work of the X-10 reactor producing more medical isotopes as well as allowing higher fidelity of materials research. Researchers in the Biology Division studied the effects of chemicals on mice including petrol fumes, pesticides and tobacco. In the late 1960s cuts in funding led to plans for another particle accelerator to be cancelled and the United States Atomic Energy Commission cut the breeder reactor program by two thirds leading to a downsizing in staff from 5000 to 3800.

In the 1970s the prospect of fusion power was strongly considered sparking research at ORNL. A tokamak called ORMAK was made operational in 1971 and after the success of the fusion experiments it was enlarged and renamed ORMAK II in 1973. The US Atomic Energy Commission required improved safety standards in the early 1970s for nuclear reactors so ORNL staff wrote almost 100 requirements covering many factors including fuel transport and earthquake resistance. In 1972 the AEC held a series of public hearings where emergency cooling requirements were highlighted and the safety requirements became more stringent. ORNL was involved in analysing the damage to the core of the Three Mile Island Nuclear Generating Station after the accident in 1979. Also in 1972 Peter Mazur, a biologist at ORNL, froze with liquid nitrogen, thawed and implanted mouse embryos in a surrogate mother. The mouse pups were born healthy. The technique is popular in the livestock industry as it allows the embryos of valuable cattle to be transported easily and a prize cow can have multiple eggs extracted and thus through in vitro fertilisation have many more offspring that would naturally be possible. In 1974 Alvin Weinberg, director of the lab for 19 years, was replaced by Herman Postma, a fusion scientist. In 1977 construction began for 6 metre (20 foot) superconducting electromagnets intended to control fusion reactions. The project was an international effort, three electromagnets were produced in the US, one in Japan, one in Switzerland and the final by remaining European states and experimentation continued into the 1980s.

Read more about this topic:  Oak Ridge National Laboratory

Famous quotes containing the word history:

    To history therefore I must refer for answer, in which it would be an unhappy passage indeed, which should shew by what fatal indulgence of subordinate views and passions, a contest for an atom had defeated well founded prospects of giving liberty to half the globe.
    Thomas Jefferson (1743–1826)

    The steps toward the emancipation of women are first intellectual, then industrial, lastly legal and political. Great strides in the first two of these stages already have been made of millions of women who do not yet perceive that it is surely carrying them towards the last.
    Ellen Battelle Dietrick, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 13, by Susan B. Anthony and Ida Husted Harper (1902)

    Every member of the family of the future will be a producer of some kind and in some degree. The only one who will have the right of exemption will be the mother ...
    Ruth C. D. Havens, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 13, by Susan B. Anthony and Ida Husted Harper (1902)