Set-theoretic Definition
O-minimal structures can be defined without recourse to model theory. Here we define a structure on a nonempty set M in a set-theoretic manner, as a sequence S = (Sn), n = 0,1,2,... such that
- Sn is a boolean algebra of subsets of Mn
- if A ∈ Sn then M × A and A ×M are in Sn+1
- the set {(x1,...,xn) ∈ Mn : x1 = xn} is in Sn
- if A ∈ Sn+1 and π : Mn+1 → Mn is the projection map on the first n coordinates, then π(A) ∈ Mn.
If M has a dense linear order without endpoints on it, say <, then a structure S on M is called o-minimal if it satisfies the extra axioms
- the set {(x,y) ∈ M2 : x < y} is in S2
- the sets in S1 are precisely the finite unions of intervals and points.
The "o" stands for "order", since any o-minimal structure requires an ordering on the underlying set.
Read more about this topic: O-minimal Theory
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)