Examples
- Any finite-dimensional vector space is nuclear, because any operator on a finite-dimensional vector space is nuclear.
There are no Banach spaces that are nuclear, except for the finite-dimensional ones. In practice a sort of converse to this is often true: if a "naturally occurring" topological vector space is not a Banach space, then there is a good chance that it is nuclear.
- The simplest infinite example of a nuclear space is the space of all rapidly decreasing sequences c=(c1, c2,...). ("Rapidly decreasing" means that cnp(n) is bounded for any polynomial p.) For each real number s, we can define a norm ||·||s by
- ||c||s = sup |cn|ns
If the completion in this norm is Cs, then there is a natural map from Cs to Ct whenever s≥t, and this is nuclear whenever s>t+1, essentially because the series Σnt−s is then absolutely convergent. In particular for each norm ||·||t we can find another norm, say ||·||t+2, such that the map from Ct+2 to Ct is nuclear. So the space is nuclear.
- The space of smooth functions on any compact manifold is nuclear.
- The Schwartz space of smooth functions on for which the derivatives of all orders are rapidly decreasing is a nuclear space.
- The space of entire holomorphic functions on the complex plane is nuclear.
- The inductive limit of a sequence of nuclear spaces is nuclear.
- The strong dual of a nuclear Frechet space is nuclear.
- The product of a family of nuclear spaces is nuclear.
- The completion of a nuclear space is nuclear (and in fact a space is nuclear if and only if its completion is nuclear).
- The tensor product of two nuclear spaces is nuclear.
Read more about this topic: Nuclear Space
Famous quotes containing the word examples:
“No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.”
—André Breton (18961966)
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)