Nuclear Reactor Physics - Delayed Neutrons and Controllability

Delayed Neutrons and Controllability

Fission reactions and subsequent neutron escape happen very quickly; this is important for nuclear weapons, where the object is to make a nuclear core release as much energy as possible before it physically explodes. Most neutrons emitted by fission events are prompt: they are emitted essentially instantaneously. Once emitted, the average neutron lifetime in a typical core is on the order of a millisecond, so if the exponential factor is as small as 0.01, then in one second the reactor power will vary by a factor of (1+0.01)1000, or more than ten thousand. Nuclear weapons are engineered to maximize the power growth rate, with lifetimes well under a millisecond and exponential factors close to 2; but such rapid variation would render it practically impossible to control the reaction rates in a nuclear reactor.

Fortunately, the effective neutron lifetime is much longer than the average lifetime of a single neutron in the core. About 0.65% of the neutrons produced by 235U fission, and about 0.75% of the neutrons produced by 239Pu fission, are not produced immediately, but rather are emitted like gamma rays from an excited nucleus after a further decay step. In this step, further radioactive decay of some of the fission products (almost always negative beta decay), is followed by immediate neutron emission from the excited daughter product, with an average life time of the beta decay (and thus the neutron emission) of about 15 seconds. These so-called delayed neutrons increase the effective average lifetime of neutrons in the core, to nearly 0.1 seconds, so that a core with of 0.01 would increase in one second by only a factor of (1+0.01)10, or about 1.1 -- a 10% increase. This is a controllable rate of change.

Most nuclear reactors are hence operated in a prompt subcritical, delayed critical condition: the prompt neutrons alone are not sufficient to sustain a chain reaction, but the delayed neutrons make up the small difference required to keep the reaction going. This has effects on how reactors are controlled: when a small amount of control rod is slid into or out of the reactor core, the power level changes at first very rapidly due to prompt subcritical multiplication and then more gradually, following the exponential growth or decay curve of the delayed critical reaction. Furthermore, increases in reactor power can be performed at any desired rate simply by pulling out a sufficient length of control rod. However, without addition of a neutron poison or active neutron-absorber, decreases in fission rate are limited in speed, because even if the reactor is taken deeply subcritical to stop prompt fission neutron production, delayed neutrons are produced after ordinary beta decay of fission products already in place, and this decay-production of neutrons cannot be changed.

Read more about this topic:  Nuclear Reactor Physics

Famous quotes containing the word delayed:

    When the people saw that Moses delayed to come down from the mountain, the people gathered around Aaron, and said to him, “Come, make gods for us, who shall go before us; as for this Moses, the man who brought us up out of the land of Egypt, we do not know what has become of him.”
    Bible: Hebrew, Exodus 32:1.