History
Modern physics |
---|
Schrödinger equation |
History of modern physics |
Founders Max Planck · Albert Einstein |
Branches
Quantum mechanics Quantum chromodynamics Quantum electrodynamics Quantum statistical mechanics Condensed matter physics Nuclear physics Particle physics · Atomic physics General relativity · Special relativity |
Scientists Röntgen · Becquerel · Lorentz · Planck · Curie · Wien · Skłodowska-Curie · Sommerfeld · Rutherford · Soddy · Onnes · Einstein · Wilczek · Born · Weyl · Bohr · Schrödinger · de Broglie · Laue · Bose · Compton · Pauli · Walton · Fermi · Waals · Heisenberg · Dyson · Zeeman · Moseley · Hilbert · Gödel · Jordan · Dirac · Wigner · Hawking · P.W Anderson · Thomson · Poincaré · Wheeler · Laue · Penrose · Millikan · Nambu · von Neumann · Higgs · Hahn · Feynman · Lee · Lenard · Salam · 't Hooft · Bell · Gell-Mann · J. J. Thomson · Raman · Bragg · Bardeen · Shockley · Chadwick · Lawrence |
The history of nuclear physics as a discipline distinct from atomic physics starts with the discovery of radioactivity by Henri Becquerel in 1896, while investigating phosphorescence in uranium salts. The discovery of the electron by J. J. Thomson a year later was an indication that the atom had internal structure. At the turn of the 20th century the accepted model of the atom was J. J. Thomson's plum pudding model in which the atom was a large positively charged ball with small negatively charged electrons embedded inside of it. By the turn of the century physicists had also discovered three types of radiation emanating from atoms, which they named alpha, beta, and gamma radiation. Experiments in 1911 by Otto Hahn, and by James Chadwick in 1914 discovered that the beta decay spectrum was continuous rather than discrete. That is, electrons were ejected from the atom with a range of energies, rather than the discrete amounts of energies that were observed in gamma and alpha decays. This was a problem for nuclear physics at the time, because it indicated that energy was not conserved in these decays.
In 1905, Albert Einstein formulated the idea of mass–energy equivalence. While the work on radioactivity by Becquerel and Marie Curie predates this, an explanation of the source of the energy of radioactivity would have to wait for the discovery that the nucleus itself was composed of smaller constituents, the nucleons.
Read more about this topic: Nuclear Physics
Famous quotes containing the word history:
“[Men say:] Dont you know that we are your natural protectors? But what is a woman afraid of on a lonely road after dark? The bears and wolves are all gone; there is nothing to be afraid of now but our natural protectors.”
—Frances A. Griffin, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 4, ch. 19, by Susan B. Anthony and Ida Husted Harper (1902)
“The history is always the same the product is always different and the history interests more than the product. More, that is, more. Yes. But if the product was not different the history which is the same would not be more interesting.”
—Gertrude Stein (18741946)
“This above all makes history useful and desirable: it unfolds before our eyes a glorious record of exemplary actions.”
—Titus Livius (Livy)