Normal Matrix - Special Cases

Special Cases

Among complex matrices, all unitary, Hermitian, and skew-Hermitian matrices are normal. Likewise, among real matrices, all orthogonal, symmetric, and skew-symmetric matrices are normal.

However, it is not the case that all normal matrices are either unitary or (skew-)Hermitian. As an example, the matrix

is normal because

The matrix A is neither unitary, Hermitian, nor skew-Hermitian.

The sum or product of two normal matrices is not necessarily normal. If they commute, however, then this is true.

If A is both a triangular matrix and a normal matrix, then A is diagonal. This can be seen by looking at the diagonal entries of A*A and AA*, where A is a normal, triangular matrix.

Read more about this topic:  Normal Matrix

Famous quotes containing the words special and/or cases:

    It is a maxim among these lawyers, that whatever hath been done before, may legally be done again: and therefore they take special care to record all the decisions formerly made against common justice and the general reason of mankind.
    Jonathan Swift (1667–1745)

    To think is of itself to be useful; it is always and in all cases a striving toward God.
    Victor Hugo (1802–1885)