Why Is The Squaring Function Not Uniformly Continuous?
Let f(x) = x2 defined on . Let be an infinite hyperreal. The hyperreal number is infinitely close to N. Meanwhile, the difference
is not infinitesimal. Therefore f* fails to be microcontinuous at N. Thus, the squaring function is not uniformly continuous, according to the definition in uniform continuity above.
A similar proof may be given in the standard setting (Fitzpatrick 2006, Example 3.15).
Read more about this topic: Non-standard Calculus
Famous quotes containing the word function:
“If the children and youth of a nation are afforded opportunity to develop their capacities to the fullest, if they are given the knowledge to understand the world and the wisdom to change it, then the prospects for the future are bright. In contrast, a society which neglects its children, however well it may function in other respects, risks eventual disorganization and demise.”
—Urie Bronfenbrenner (b. 1917)