Non-standard Calculus - Uniform Continuity

Uniform Continuity

A function f on an interval I is uniformly continuous if its natural extension f* in I* has the following property (see Keisler, Foundations of Infinitesimal Calculus ('07), p. 45):

for every pair of hyperreals x and y in I*, if then .

In terms of microcontinuity defined in the previous section, this can be stated as follows: a real function is uniformly continuous if its natural extension f* is microcontinuous at every point of the domain of f*.

This definition has a reduced quantifier complexity when compared with the standard (ε, δ)-definition. Namely, the epsilon-delta definition of uniform continuity requires four quantifiers, while the infinitesimal definition requires only two quantifiers. It has the same quantifier complexity as the definition of uniform continuity in terms of sequences in standard calculus, which however is not expressible in the first-order language of the real numbers.

The hyperreal definition can be illustrated by the following three examples.

Example 1: a function f is uniformly continuous on the semi-open interval (0,1], if and only if its natural extension f* is microcontinuous (in the sense of the formula above) at every positive infinitesimal, in addition to continuity at the standard points of the interval.

Example 2: a function f is uniformly continuous on the semi-open interval [0,∞) if and only if it is continuous at the standard points of the interval, and in addition, the natural extension f* is microcontinuous at every positive infinite hyperreal point.

Example 3: similarly, the failure of uniform continuity for the squaring function

is due to the absence of microcontinuity at a single infinite hyperreal point, see below.

Concerning quantifier complexity, the following remarks were made by Kevin Houston:

The number of quantifiers in a mathematical statement gives a rough measure of the statement’s complexity. Statements involving three or more quantifiers can be difficult to understand. This is the main reason why it is hard to understand the rigorous definitions of limit, convergence, continuity and differentiability in analysis as they have many quantifiers. In fact, it is the alternation of the and that causes the complexity.

Andreas Blass wrote as follows:

Often ... the nonstandard definition of a concept is simpler than the standard definition (both intuitively simpler and simpler in a technical sense, such as quantifiers over lower types or fewer alternations of quantifiers).

Read more about this topic:  Non-standard Calculus

Famous quotes containing the words uniform and/or continuity:

    Odors from decaying food wafting through the air when the door is opened, colorful mold growing between a wet gym uniform and the damp carpet underneath, and the complete supply of bath towels scattered throughout the bedroom can become wonderful opportunities to help your teenager learn once again that the art of living in a community requires compromise, negotiation, and consensus.
    Barbara Coloroso (20th century)

    Every society consists of men in the process of developing from children into parents. To assure continuity of tradition, society must early prepare for parenthood in its children; and it must take care of the unavoidable remnants of infantility in its adults. This is a large order, especially since a society needs many beings who can follow, a few who can lead, and some who can do both, alternately or in different areas of life.
    Erik H. Erikson (1904–1994)