Internal Sets
A set x is internal if and only if x is an element of *A for some element A of V(R). *A itself is internal if A belongs to V(R).
We now formulate the basic logical framework of nonstandard analysis:
- Extension principle: The mapping * is the identity on R.
- Transfer principle: For any formula P(x1, ..., xn) with bounded quantification and with free variables x1, ..., xn, and for any elements A1, ..., An of V(R), the following equivalence holds:
- Countable saturation: If {Ak}k ∈ N is a decreasing sequence of nonempty internal sets, with k ranging over the natural numbers, then
One can show using ultraproducts that such a map * exists. Elements of V(R) are called standard. Elements of *R are called hyperreal numbers.
Read more about this topic: Non-standard Analysis
Famous quotes containing the words internal and/or sets:
“We have our difficulties, true; but we are a wiser and a tougher nation than we were in 1932. Never have there been six years of such far flung internal preparedness in all of history. And this has been done without any dictators power to command, without conscription of labor or confiscation of capital, without concentration camps and without a scratch on freedom of speech, freedom of the press or the rest of the Bill of Rights.”
—Franklin D. Roosevelt (18821945)
“A continual feast of commendation is only to be obtained by merit or by wealth: many are therefore obliged to content themselves with single morsels, and recompense the infrequency of their enjoyment by excess and riot, whenever fortune sets the banquet before them.”
—Samuel Johnson (17091784)