Definition
The definition uses the idea, explained on its own page, of a central series for a group. The following are equivalent formulations:
- A nilpotent group is one that has a central series of finite length.
- A nilpotent group is one whose lower central series terminates in the trivial subgroup after finitely many steps.
- A nilpotent group is one whose upper central series terminates in the whole group after finitely many steps.
For a nilpotent group, the smallest n such that G has a central series of length n is called the nilpotency class of G ; and G is said to be nilpotent of class n. (By definition, the length is n if there are n + 1 different subgroups in the series, including the trivial subgroup and the whole group.)
Equivalently, the nilpotency class of G equals the length of the lower central series or upper central series. If a group has nilpotency class at most m, then it is sometimes called a nil-m group.
It follows immediately from any of the above forms of the definition of nilpotency, that the trivial group is the unique group of nilpotency class 0, and groups of nilpotency class 1 are exactly the non-trivial abelian groups.
Read more about this topic: Nilpotent Group
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)