Neurotoxin

Neurotoxin is derived from the Greek νευρών (nevron / neuron) meaning "nerve" (derived from neuro: "cord") and Latin toxicum meaning "poison" (derived from Greek τοξικόν φάρμακον toxikon pharmakon, meaning "arrow poison"). They are an extensive class of exogenous chemical neurological insults which can adversely affect function in both developing and mature nervous tissue. The term can also be used to classify endogenous compounds which when abnormally concentrated can prove neurologically toxic. Though neurotoxins are often neurologically destructive, their ability to specifically target neural components is important in the study of nervous systems. Common examples of neurotoxins include lead, ethanol, glutamate, nitric oxide (NO), botulinum toxin, tetanus toxin, and tetrodotoxin.

Neurotoxin activity can be characterized by the ability to inhibit neuron control over ion concentrations across the cell membrane, or communication between neurons across a synapse. Local pathology of neurotoxin exposure often includes neuron excitotoxicity or apoptosis but can also include glial cell damage. Macroscopic manifestations of neurotoxin exposure can include widespread central nervous system damage such as mental retardation, persistent memory impairments, epilepsy, and dementia. Additionally, neurotoxin-mediated peripheral nervous system damage such as neuropathy or myopathy is common. Support has been shown for a number of treatments aimed at attenuating neurotoxin-mediated injury, such as antioxidant, antitoxin and ethanol administration.

Read more about Neurotoxin:  Background, Applications in Neuroscience, Mechanisms of Activity