Negative Binomial Distribution - Definition

Definition

Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called “success” and “failure”. In each trial the probability of success is p and of failure is (1 − p). We are observing this sequence until a predefined number r of failures has occurred. Then the random number of successes we have seen, X, will have the negative binomial (or Pascal) distribution:

 X\ \sim\ \text{NB}(r,\, p)

When applied to real-world problems, outcomes of success and failure may or may not be outcomes we ordinarily view as good and bad, respectively. Suppose we used the negative binomial distribution to model the number of days a certain machine works before it breaks down. In this case “success” would be the result on a day when the machine worked properly, whereas a breakdown would be a “failure”. If we used the negative binomial distribution to model the number of goal attempts a sportsman makes before scoring a goal, though, then each unsuccessful attempt would be a “success”, and scoring a goal would be “failure”. If we are tossing a coin, then the negative binomial distribution can give the number of heads (“success”) we are likely to encounter before we encounter a certain number of tails (“failure”).

The probability mass function of the negative binomial distribution is

 f(k) \equiv \Pr(X = k) = {k+r-1 \choose k} (1-p)^r p^k \quad\text{for }k = 0, 1, 2, \dots

Here the quantity in parentheses is the binomial coefficient, and is equal to

 {k+r-1 \choose k} = \frac{(k+r-1)!}{k!\,(r-1)!} = \frac{(k+r-1)(k+r-2)\cdots(r)}{k!}.

This quantity can alternatively be written in the following manner, explaining the name “negative binomial”:

 \frac{(k+r-1)\cdots(r)}{k!} = (-1)^k \frac{(-r)(-r-1)(-r-2)\cdots(-r-k+1)}{k!} = (-1)^k{-r \choose k}. \qquad (*)

To understand the above definition of the probability mass function, note that the probability for every specific sequence of k successes and r failures is (1 − p)rpk, because the outcomes of the k + r trials are supposed to happen independently. Since the rth failure comes last, it remains to choose the k trials with successes out of the remaining k + r − 1 trials. The above binomial coefficient, due to its combinatorial interpretation, gives precisely the number of all these sequences of length k + r − 1.

Read more about this topic:  Negative Binomial Distribution

Famous quotes containing the word definition:

    Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.
    The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on “life” (based on wording in the First Edition, 1935)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)