Mutual Information - Relation To Other Quantities

Relation To Other Quantities

Mutual information can be equivalently expressed as


\begin{align}
I(X;Y) & {} = H(X) - H(X|Y) \\
& {} = H(Y) - H(Y|X) \\
& {} = H(X) + H(Y) - H(X,Y) \\
& {} = H(X,Y) - H(X|Y) - H(Y|X)
\end{align}

where H(X) and H(Y) are the marginal entropies, H(X|Y) and H(Y|X) are the conditional entropies, and H(X,Y) is the joint entropy of X and Y. Using the Jensen's inequality on the definition of mutual information, we can show that I(X;Y) is non-negative; so consequently, H(X) ≥ H(X|Y).

Intuitively, if entropy H(X) is regarded as a measure of uncertainty about a random variable, then H(X|Y) is a measure of what Y does not say about X. This is "the amount of uncertainty remaining about X after Y is known", and thus the right side of the first of these equalities can be read as "the amount of uncertainty in X, minus the amount of uncertainty in X which remains after Y is known", which is equivalent to "the amount of uncertainty in X which is removed by knowing Y". This corroborates the intuitive meaning of mutual information as the amount of information (that is, reduction in uncertainty) that knowing either variable provides about the other.

Note that in the discrete case H(X|X) = 0 and therefore H(X) = I(X;X). Thus I(X;X) ≥ I(X;Y), and one can formulate the basic principle that a variable contains at least as much information about itself as any other variable can provide.

Mutual information can also be expressed as a Kullback-Leibler divergence, of the product p(x) × p(y) of the marginal distributions of the two random variables X and Y, from p(x,y) the random variables' joint distribution:

Furthermore, let p(x|y) = p(x, y) / p(y). Then


\begin{align}
I(X;Y) & {} = \sum_y p(y) \sum_x p(x|y) \log_2 \frac{p(x|y)}{p(x)} \\
& {} = \sum_y p(y) \; D_{\mathrm{KL}}(p(x|y)\|p(x)) \\
& {} = \mathbb{E}_Y\{D_{\mathrm{KL}}(p(x|y)\|p(x))\}.
\end{align}

Thus mutual information can also be understood as the expectation of the Kullback-Leibler divergence of the univariate distribution p(x) of X from the conditional distribution p(x|y) of X given Y: the more different the distributions p(x|y) and p(x), the greater the information gain.

Read more about this topic:  Mutual Information

Famous quotes containing the words relation to, relation and/or quantities:

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)

    There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.
    Umberto Eco (b. 1932)

    Compilers resemble gluttonous eaters who devour excessive quantities of healthy food just to excrete them as refuse.
    Franz Grillparzer (1791–1872)