Multiply Perfect Number

In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number.

For a given natural number k, a number n is called k-perfect (or k-fold perfect) if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of July 2004, k-perfect numbers are known for each value of k up to 11.

It can be proven that:

  • For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p+1)-perfect. This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
  • If 3n is 4k-perfect and 3 does not divide n, then n is 3k-perfect.

Read more about Multiply Perfect Number:  Smallest k-perfect Numbers

Famous quotes containing the words multiply, perfect and/or number:

    We go on multiplying our conveniences only to multiply our cares. We increase our possessions only to the enlargement of our anxieties.
    Anna C. Brackett (1836–1911)

    Grammar is a tricky, inconsistent thing. Being the backbone of speech and writing, it should, we think, be eminently logical, make perfect sense, like the human skeleton. But, of course, the skeleton is arbitrary, too. Why twelve pairs of ribs rather than eleven or thirteen? Why thirty-two teeth? It has something to do with evolution and functionalism—but only sometimes, not always. So there are aspects of grammar that make good, logical sense, and others that do not.
    John Simon (b. 1925)

    Computers are good at swift, accurate computation and at storing great masses of information. The brain, on the other hand, is not as efficient a number cruncher and its memory is often highly fallible; a basic inexactness is built into its design. The brain’s strong point is its flexibility. It is unsurpassed at making shrewd guesses and at grasping the total meaning of information presented to it.
    Jeremy Campbell (b. 1931)