Multiply Perfect Number

In mathematics, a multiply perfect number (also called multiperfect number or pluperfect number) is a generalization of a perfect number.

For a given natural number k, a number n is called k-perfect (or k-fold perfect) if and only if the sum of all positive divisors of n (the divisor function, σ(n)) is equal to kn; a number is thus perfect if and only if it is 2-perfect. A number that is k-perfect for a certain k is called a multiply perfect number. As of July 2004, k-perfect numbers are known for each value of k up to 11.

It can be proven that:

  • For a given prime number p, if n is p-perfect and p does not divide n, then pn is (p+1)-perfect. This implies that an integer n is a 3-perfect number divisible by 2 but not by 4, if and only if n/2 is an odd perfect number, of which none are known.
  • If 3n is 4k-perfect and 3 does not divide n, then n is 3k-perfect.

Read more about Multiply Perfect Number:  Smallest k-perfect Numbers

Famous quotes containing the words multiply, perfect and/or number:

    Off south, the bison multiply so fast
    a slaughter’s mandatory every spring
    and every spring the creeks get fat
    and Kicking Horse fills up.
    Richard Hugo (1923–1982)

    The complete life, the perfect pattern, includes old age as well as youth and maturity. The beauty of the morning and the radiance of noon are good, but it would be a very silly person who drew the curtains and turned on the light in order to shut out the tranquillity of the evening. Old age has its pleasures, which, though different, are not less than the pleasures of youth.
    W. Somerset Maugham (1874–1965)

    I who have been involved with all styles of painting can assure you that the only things that fluctuate are the waves of fashion which carry the snobs and speculators; the number of true connoisseurs remains more or less the same.
    Pablo Picasso (1881–1973)