Smallest k-perfect Numbers
The following table gives an overview of the smallest k-perfect numbers for k <= 7 (sequence A007539 in OEIS):
k | Smallest k-perfect number | Found by |
---|---|---|
1 | 1 | ancient |
2 | 6 | ancient |
3 | 120 | ancient |
4 | 30240 | René Descartes, circa 1638 |
5 | 14182439040 | René Descartes, circa 1638 |
6 | 154345556085770649600 | Robert Daniel Carmichael, 1907 |
7 | 141310897947438348259849402738 485523264343544818565120000 | TE Mason, 1911 |
For example, 120 is 3-perfect because the sum of the divisors of 120 is
1+2+3+4+5+6+8+10+12+15+20+24+30+40+60+120 = 360 = 3 × 120.
Read more about this topic: Multiply Perfect Number
Famous quotes containing the words smallest and/or numbers:
“The smallest flower is a thought, a life answering to some feature of the Great Whole, of whom they have a persistent intuition.”
—Honoré De Balzac (17991850)
“The only phenomenon with which writing has always been concomitant is the creation of cities and empires, that is the integration of large numbers of individuals into a political system, and their grading into castes or classes.... It seems to have favored the exploitation of human beings rather than their enlightenment.”
—Claude Lévi-Strauss (b. 1908)