Multigate Device - Compact Modeling

Compact Modeling

BSIMCMG106.0.0, officially released on March 1, 2012 by UC Berkeley BSIM Group, is the first standard model for FinFETs. BSIM-CMG is implemented in Verilog-A. Physical surface-potential-based formulations are derived for both intrinsic and extrinsic models with finite body doping. The surface potentials at the source and drain ends are solved analytically with poly-depletion and quantum mechanical effects. The effect of finite body doping is captured through a perturbation approach. The analytic surface potential solution agrees closely with the 2-D device simulation results. If the channel doping concentration is low enough to be neglected, computational efficiency can be further improved by a setting a specific flag (COREMOD= 1).

All the important Multi-Gate (MG) transistor behaviors are captured by this model. Volume inversion is included in the solution of the Poisson’s equation, hence the subsequent I-V formulation automatically captures the volume inversion effect. Analysis of the electro-static potential in the body of MG MOSFETs provided the model equation for the short channel effects (SCE). The extra electrostatic control from the end-gates (top/bottom gates) (triple or quadruple-gate) is also captured in the short channel model.

Read more about this topic:  Multigate Device

Famous quotes containing the words compact and/or modeling:

    What compact mean you to have with us?
    Will you be pricked in number of our friends,
    Or shall we on, and not depend on you?
    William Shakespeare (1564–1616)

    The computer takes up where psychoanalysis left off. It takes the ideas of a decentered self and makes it more concrete by modeling mind as a multiprocessing machine.
    Sherry Turkle (b. 1948)