A multigate device or multiple gate field-effect transistor (MuGFET) refers to a MOSFET (metal–oxide–semiconductor field-effect transistor) which incorporates more than one gate into a single device. The multiple gates may be controlled by a single gate electrode, wherein the multiple gate surfaces act electrically as a single gate, or by independent gate electrodes. A multigate device employing independent gate electrodes is sometimes called a Multiple Independent Gate Field Effect Transistor (MIGFET). Multigate transistors are one of several strategies being developed by CMOS semiconductor manufacturers to create ever-smaller microprocessors and memory cells, colloquially referred to as extending Moore's Law.
Development efforts into multigate transistors have been reported by AMD, Hitachi, IBM, Infineon Technologies, Intel Corporation, TSMC, Freescale Semiconductor, University of California, Berkeley and others and the ITRS predicts that such devices will be the cornerstone of sub-32 nm technologies. The primary roadblock to widespread implementation is manufacturability, as both planar and non-planar designs present significant challenges, especially with respect to lithography and patterning. Other complementary strategies for device scaling include channel strain engineering, silicon-on-insulator-based technologies, and high-k/metal gate materials.
Dual gate MOSFETs are commonly used in VHF mixers and in sensitive VHF front end amplifiers. They are available from manufacturers such as Motorola, NXP, and Hitachi.
Read more about Multigate Device: Industry Need, Varieties, Compact Modeling
Famous quotes containing the word device:
“Syntax is the study of the principles and processes by which sentences are constructed in particular languages. Syntactic investigation of a given language has as its goal the construction of a grammar that can be viewed as a device of some sort for producing the sentences of the language under analysis.”
—Noam Chomsky (b. 1928)