Mulliken charges arise from the Mulliken population analysis and provide a means of estimating partial atomic charges from calculations carried out by the methods of computational chemistry, particularly those based on the linear combination of atomic orbitals molecular orbital method, and are routinely used as variables in linear regression (QSAR) procedures. If the coefficients of the basis functions in the molecular orbital are Cμi for the μ'th basis function in the i'th molecular orbital, the density matrix terms are:
for a closed shell system where each molecular orbital is doubly occupied. The population matrix then has terms
is the overlap matrix of the basis functions. The sum of all terms of summed over is the gross orbital product for orbital - . The sum of the gross orbital products is N - the total number of electrons. The Mulliken population assigns an electronic charge to a given atom A, known as the gross atom population: as the sum of over all orbitals belonging to atom A. The charge, is then defined as the difference between the number of electrons on the isolated free atom, which is the atomic number, and the gross atom population:
One problem with this approach is the equal division of the off-diagonal terms between the two basis functions. This leads to charge separations in molecules that are exaggerated. In a modified Mulliken population analysis, this problem can be reduced by dividing the overlap populations between the corresponding orbital populations and in the ratio between the latter. This choice, although still arbitrary, relates the partitioning in some way to the electronegativity difference between the corresponding atoms.
Another problem is the Mulliken charges are explicitly sensitive to the basis set choice. This problem is addressed by Natural Population Analysis and other modern methods for computing net atomic charges.
Famous quotes containing the words population and/or analysis:
“The most advanced nations are always those who navigate the most. The power which the sea requires in the sailor makes a man of him very fast, and the change of shores and population clears his head of much nonsense of his wigwam.”
—Ralph Waldo Emerson (18031882)
“... the big courageous acts of life are those one never hears of and only suspects from having been through like experience. It takes real courage to do battle in the unspectacular task. We always listen for the applause of our co-workers. He is courageous who plods on, unlettered and unknown.... In the last analysis it is this courage, developing between man and his limitations, that brings success.”
—Alice Foote MacDougall (18671945)