Free Strict Monoidal Category
For every category C, the free strict monoidal category Σ(C) can be constructed as follows:
- its objects are lists (finite sequences) A1, ..., An of objects of C;
- there are arrows between two objects A1, ..., Am and B1, ..., Bn only if m = n, and then the arrows are lists (finite sequences) of arrows f1: A1 → B1, ..., fn: An → Bn of C;
- the tensor product of two objects A1, ..., An and B1, ..., Bm is the concatenation A1, ..., An, B1, ..., Bm of the two lists, and, similarly, the tensor product of two morphisms is given by the concatenation of lists.
This operation Σ mapping category C to Σ(C) can be extended to a strict 2-monad on Cat.
Read more about this topic: Monoidal Categories
Famous quotes containing the words free, strict and/or category:
“Only free men can negotiate. Prisoners cannot enter into contracts.”
—Nelson Mandela (b. 1918)
“Science asks no questions about the ontological pedigree or a priori character of a theory, but is content to judge it by its performance; and it is thus that a knowledge of nature, having all the certainty which the senses are competent to inspire, has been attaineda knowledge which maintains a strict neutrality toward all philosophical systems and concerns itself not with the genesis or a priori grounds of ideas.”
—Chauncey Wright (18301875)
“Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.”
—Vladimir Ilyich Lenin (18701924)