Definition
In probability theory and statistics, the moment-generating function of a random variable X is
wherever this expectation exists.
always exists and is equal to 1.
A key problem with moment-generating functions is that moments and the moment-generating function may not exist, as the integrals need not converge absolutely. By contrast, the characteristic function always exists (because it is the integral of a bounded function on a space of finite measure), and thus may be used instead.
More generally, where T, an n-dimensional random vector, one uses instead of tX:
The reason for defining this function is that it can be used to find all the moments of the distribution. The series expansion of etX is:
Hence:
where mn is the nth moment.
If we differentiate MX(t) i times with respect to t and then set t = 0 we shall therefore obtain the ith moment about the origin, mi.
Read more about this topic: Moment-generating Function
Famous quotes containing the word definition:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)