Molecular Clock - Early Discovery and Genetic Equidistance

Early Discovery and Genetic Equidistance

The notion of the existence of a so-called "molecular clock" was first attributed to Emile Zuckerkandl and Linus Pauling who, in 1962, noticed that the number of amino acid differences in hemoglobin between different lineages changes roughly linearly with time, as estimated from fossil evidence. They generalized this observation to assert that the rate of evolutionary change of any specified protein was approximately constant over time and over different lineages.

The genetic equidistance phenomenon was first noted in 1963 by E. Margoliash, who wrote: "It appears that the number of residue differences between cytochrome C of any two species is mostly conditioned by the time elapsed since the lines of evolution leading to these two species originally diverged. If this is correct, the cytochrome c of all mammals should be equally different from the cytochrome c of all birds. Since fish diverges from the main stem of vertebrate evolution earlier than either birds or mammals, the cytochrome c of both mammals and birds should be equally different from the cytochrome c of fish. Similarly, all vertebrate cytochrome c should be equally different from the yeast protein." For example, the difference between the cytochrome C of a carp and a frog, turtle, chicken, rabbit, and horse is a very constant 13% to 14%. Similarly, the difference between the cytochrome C of a bacterium and yeast, wheat, moth, tuna, pigeon, and horse ranges from 64% to 69%. Together with the work of Emile Zuckerkandl and Linus Pauling, the genetic equidistance result directly led to the formal postulation of the molecular clock hypothesis in the early 1960s. Genetic equidistance has often been used to infer equal time of separation of different sister species from an outgroup.

Later Allan Wilson and Vincent Sarich built upon this work.

Read more about this topic:  Molecular Clock

Famous quotes containing the words early, discovery and/or genetic:

    Perhaps the most valuable result of all education is the ability to make yourself do the thing you have to do, when it ought to be done, whether you like it or not; it is the first lesson that ought to be learned; and however early a man’s training begins, its probably the last lesson that he learns thoroughly.
    Thomas Henry Huxley (1825–95)

    The discovery of Pennsylvania’s coal and iron was the deathblow to Allaire. The works were moved to Pennsylvania so hurriedly that for years pianos and the larger pieces of furniture stood in the deserted houses.
    —For the State of New Jersey, U.S. public relief program (1935-1943)

    Nature, we are starting to realize, is every bit as important as nurture. Genetic influences, brain chemistry, and neurological development contribute strongly to who we are as children and what we become as adults. For example, tendencies to excessive worrying or timidity, leadership qualities, risk taking, obedience to authority, all appear to have a constitutional aspect.
    Stanley Turecki (20th century)