Ring Theory Interpretation
Given a field K and a finite group G, the group algebra K (which is the K-vector space with K-basis consisting of the elements of G, endowed with algebra multiplication by extending the multiplication of G by linearity) is an Artinian ring.
When the order of G is divisible by the characteristic of K, the group algebra is not semisimple, hence has non-zero Jacobson radical. In that case, there are finite-dimensional modules for the group algebra that are not projective modules. By contrast, in the characteristic 0 case every irreducible representation is a direct summand of the regular representation, hence is projective.
Read more about this topic: Modular Representation Theory
Famous quotes containing the words ring and/or theory:
“Interpreting the dance: young women in white dancing in a ring can only be virgins; old women in black dancing in a ring can only be witches; but middle-aged women in colors, square dancing...?”
—Mason Cooley (b. 1927)
“Thus the theory of description matters most.
It is the theory of the word for those
For whom the word is the making of the world,
The buzzing world and lisping firmament.”
—Wallace Stevens (18791955)