Ring Theory Interpretation
Given a field K and a finite group G, the group algebra K (which is the K-vector space with K-basis consisting of the elements of G, endowed with algebra multiplication by extending the multiplication of G by linearity) is an Artinian ring.
When the order of G is divisible by the characteristic of K, the group algebra is not semisimple, hence has non-zero Jacobson radical. In that case, there are finite-dimensional modules for the group algebra that are not projective modules. By contrast, in the characteristic 0 case every irreducible representation is a direct summand of the regular representation, hence is projective.
Read more about this topic: Modular Representation Theory
Famous quotes containing the words ring and/or theory:
“I saw Eternity the other night,
Like a great ring of pure and endless light,”
—Henry Vaughan (16221695)
“[Anarchism] is the philosophy of the sovereignty of the individual. It is the theory of social harmony. It is the great, surging, living truth that is reconstructing the world, and that will usher in the Dawn.”
—Emma Goldman (18691940)