Modular Representation Theory - Ring Theory Interpretation

Ring Theory Interpretation

Given a field K and a finite group G, the group algebra K (which is the K-vector space with K-basis consisting of the elements of G, endowed with algebra multiplication by extending the multiplication of G by linearity) is an Artinian ring.

When the order of G is divisible by the characteristic of K, the group algebra is not semisimple, hence has non-zero Jacobson radical. In that case, there are finite-dimensional modules for the group algebra that are not projective modules. By contrast, in the characteristic 0 case every irreducible representation is a direct summand of the regular representation, hence is projective.

Read more about this topic:  Modular Representation Theory

Famous quotes containing the words ring and/or theory:

    These words dropped into my childish mind as if you should accidentally drop a ring into a deep well. I did not think of them much at the time, but there came a day in my life when the ring was fished up out of the well, good as new.
    Harriet Beecher Stowe (1811–1896)

    Osteopath—One who argues that all human ills are caused by the pressure of hard bone upon soft tissue. The proof of his theory is to be found in the heads of those who believe it.
    —H.L. (Henry Lewis)