Modified Discrete Cosine Transform - Window Functions

Window Functions

In typical signal-compression applications, the transform properties are further improved by using a window function wn (n = 0, ..., 2N-1) that is multiplied with xn and yn in the MDCT and IMDCT formulas, above, in order to avoid discontinuities at the n = 0 and 2N boundaries by making the function go smoothly to zero at those points. (That is, we window the data before the MDCT and after the IMDCT.) In principle, x and y could have different window functions, and the window function could also change from one block to the next (especially for the case where data blocks of different sizes are combined), but for simplicity we consider the common case of identical window functions for equal-sized blocks.

The transform remains invertible (that is, TDAC works), for a symmetric window wn = w2N-1-n, as long as w satisfies the Princen-Bradley condition:

.

various window functions are common, e.g.

for MP3 and MPEG-2 AAC, and

for Vorbis. AC-3 uses a Kaiser-Bessel derived (KBD) window, and MPEG-4 AAC can also use a KBD window.

Note that windows applied to the MDCT are different from windows used for other types of signal analysis, since they must fulfill the Princen-Bradley condition. One of the reasons for this difference is that MDCT windows are applied twice, for both the MDCT (analysis) and the IMDCT (synthesis).

Read more about this topic:  Modified Discrete Cosine Transform

Famous quotes containing the words window and/or functions:

    The mind too closes as it were. As the window might close of a dark empty room.
    Samuel Beckett (1906–1989)

    If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.
    Charles Baudelaire (1821–1867)