Minimum Description Length - Related Concepts

Related Concepts

MDL is very strongly connected to probability theory and statistics through the correspondence between codes and probability distributions mentioned above. This has led researchers such as David MacKay to view MDL as equivalent to Bayesian inference: code length of the model and code length of model and data together in MDL correspond to prior probability and marginal likelihood respectively in the Bayesian framework.

While Bayesian machinery is often useful in constructing efficient MDL codes, the MDL framework also accommodates other codes that are not Bayesian. An example is the Shtarkov normalized maximum likelihood code, which plays a central role in current MDL theory, but has no equivalent in Bayesian inference. Furthermore, Rissanen stresses that we should make no assumptions about the true data generating process: in practice, a model class is typically a simplification of reality and thus does not contain any code or probability distribution that is true in any objective sense. In the last mentioned reference Rissanen bases the mathematical underpinning of MDL on the Kolmogorov structure function.

According to the MDL philosophy, Bayesian methods should be dismissed if they are based on unsafe priors that would lead to poor results. The priors that are acceptable from an MDL point of view also tend to be favored in so-called objective Bayesian analysis; there, however, the motivation is usually different.

Read more about this topic:  Minimum Description Length

Famous quotes containing the words related and/or concepts:

    Becoming responsible adults is no longer a matter of whether children hang up their pajamas or put dirty towels in the hamper, but whether they care about themselves and others—and whether they see everyday chores as related to how we treat this planet.
    Eda Le Shan (20th century)

    It is impossible to dissociate language from science or science from language, because every natural science always involves three things: the sequence of phenomena on which the science is based; the abstract concepts which call these phenomena to mind; and the words in which the concepts are expressed. To call forth a concept, a word is needed; to portray a phenomenon, a concept is needed. All three mirror one and the same reality.
    Antoine Lavoisier (1743–1794)