Open and Closed Sets, Topology and Convergence
Every metric space is a topological space in a natural manner, and therefore all definitions and theorems about general topological spaces also apply to all metric spaces.
About any point in a metric space we define the open ball of radius about as the set
These open balls form the base for a topology on M, making it a topological space.
Explicitly, a subset of is called open if for every in there exists an such that is contained in . The complement of an open set is called closed. A neighborhood of the point is any subset of that contains an open ball about as a subset.
A topological space which can arise in this way from a metric space is called a metrizable space; see the article on metrization theorems for further details.
A sequence in a metric space is said to converge to the limit iff for every, there exists a natural number N such that for all . Equivalently, one can use the general definition of convergence available in all topological spaces.
A subset of the metric space is closed iff every sequence in that converges to a limit in has its limit in .
Read more about this topic: Metric Space
Famous quotes containing the words open and/or closed:
“I open with a clock striking, to beget an awful attention in the audienceit also marks the time, which is four oclock in the morning, and saves a description of the rising sun, and a great deal about gilding the eastern hemisphere.”
—Richard Brinsley Sheridan (17511816)
“Had I made capital on my prettiness, I should have closed the doors of public employment to women for many a year, by the very means which now makes them weak, underpaid competitors in the great workshop of the world.”
—Jane Grey Swisshelm (18151884)