Median - Jensen's Inequality For Medians

Jensen's Inequality For Medians

Jensen's inequality states that for any random variable x with a finite expectation E(X) and for any convex function f then

It has been shown that if x is a real variable with a unique median m and f is a C function then

A C function is a real valued function, defined on the set of real numbers R, with the property that for any real t

is a closed interval, a singleton or an empty set.

Read more about this topic:  Median

Famous quotes containing the word inequality:

    However energetically society in general may strive to make all the citizens equal and alike, the personal pride of each individual will always make him try to escape from the common level, and he will form some inequality somewhere to his own profit.
    Alexis de Tocqueville (1805–1859)