Maximum Spacing Estimation

In statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.

The concept underlying the method is based on the probability integral transform, in that a set of independent random samples derived from any random variable should on average be uniformly distributed with respect to the cumulative distribution function of the random variable. The MPS method chooses the parameter values that make the observed data as uniform as possible, according to a specific quantitative measure of uniformity.

One of the most common methods for estimating the parameters of a distribution from data, the method of maximum likelihood (MLE), can break down in various cases, such as involving certain mixtures of continuous distributions. In these cases the method of maximum spacing estimation may be successful.

Apart from its use in pure mathematics and statistics, the trial applications of the method have been reported using data from fields such as hydrology, econometrics, and others.

Read more about Maximum Spacing Estimation:  History and Usage, Definition, Goodness of Fit, See Also

Famous quotes containing the words maximum and/or estimation:

    Only at his maximum does an individual surpass all his derivative elements, and become purely himself. And most people never get there. In his own pure individuality a man surpasses his father and mother, and is utterly unknown to them.
    —D.H. (David Herbert)

    ... it would be impossible for women to stand in higher estimation than they do here. The deference that is paid to them at all times and in all places has often occasioned me as much surprise as pleasure.
    Frances Wright (1795–1852)