Maximum Parsimony (phylogenetics) - Criticism

Criticism

It has been asserted that a major problem, especially for paleontology, is that maximum parsimony assumes that the only way two species can share the same nucleotide at the same position is if they are genetically related. This asserts that phylogenetic applications of parsimony assume that all similarity is homologous (other interpretations, such as the assertion that two organisms might not be related at all, are nonsensical). This is emphatically not the case: as with any form of character-based phylogeny estimation, parsimony is used to test the homologous nature of similarities by finding the phylogenetic tree which best accounts for all of the similarities.

For example, birds and bats have wings, while crocodiles and humans do not. If these were the only data available, maximum parsimony would tend to group crocodiles with humans, and birds with bats (as would any other method of phylogenetic inference). We believe that humans are actually more closely related to bats than to crocodiles or birds. Our belief is founded on additional data that were not considered in the one-character example (using wings). If even a tiny fraction of these additional data, including information on skeletal structure, soft-tissue morphology, integument, behaviour, genetics, etc., were included in the analysis, the faint phylogenetic signal produced by the presence of wings in birds and bats would be overwhelmed by the preponderance of data supporting the (human, bat)(bird, crocodile) tree.

It is often stated that parsimony is not relevant to phylogenetic inference because "evolution is not parsimonious." In most cases, there is no explicit alternative proposed; if no alternative is available, any statistical method is preferable to none at all. Additionally, it is not clear what would be meant if the statement "evolution is parsimonious" were in fact true. This could be taken to mean that more character changes may have occurred historically than are predicted using the parsimony criterion. Because parsimony phylogeny estimation reconstructs the minimum number of changes necessary to explain a tree, this is quite possible. However, it has been shown through simulation studies, testing with known in vitro viral phylogenies, and congruence with other methods, that the accuracy of parsimony is in most cases not compromised by this. Parsimony analysis uses the number of character changes on trees to choose the best tree, but it does not require that exactly that many changes, and no more, produced the tree. As long as the changes that have not been accounted for are randomly distributed over the tree (a reasonable null expectation), the result should not be biased. In practice, the technique is robust: maximum parsimony exhibits minimal bias as a result of choosing the tree with the fewest changes.

An analogy can be drawn with choosing among contractors based on their initial (nonbinding) estimate of the cost of a job. The actual finished cost is very likely to be higher than the estimate. Despite this, choosing the contractor who furnished the lowest estimate should theoretically result in the lowest final project cost. This is because, in the absence of other data, we would assume that all of the relevant contractors have the same risk of cost overruns. In practice, of course, unscrupulous business practices may bias this result; in phylogenetics, too, some particular phylogenetic problems (for example, long branch attraction, described above) may potentially bias results. In both cases, however, there is no way to tell if the result is going to be biased, or the degree to which it will be biased, based on the estimate itself. With parsimony too, there is no way to tell that the data are positively misleading, without comparison to other evidence.

Along the same lines, parsimony is often characterized as implicitly adopting the philosophical position that evolutionary change is rare, or that homoplasy (convergence and reversal) is minimal in evolution. This is not entirely true: parsimony minimizes the number of convergences and reversals that are assumed by the preferred tree, but this may result in a relatively large number of such homoplastic events. It would be more appropriate to say that parsimony assumes only the minimum amount of change implied by the data. As above, this does not require that these were the only changes that occurred; it simply does not infer changes for which there is no evidence. The shorthand for describing this is that "parsimony minimizes assumed homoplasies, it does not assume that homoplasy is minimal."

Parsimony is also sometimes associated with the notion that "the simplest possible explanation is the best," a generalisation of Occam's Razor. Parsimony does prefer the solution that requires the least number of unsubstantiated assumptions and unsupportable conclusions, the solution that goes the least theoretical distance beyond the data. This is a very common approach to science, especially when dealing with systems that are so complex as to defy simple models. Parsimony does not by any means necessarily produce a "simple" assumption. Indeed, as a general rule, most character datasets are so "noisy" that no truly "simple" solution is possible.

Read more about this topic:  Maximum Parsimony (phylogenetics)

Famous quotes containing the word criticism:

    Of all the cants which are canted in this canting world—though the cant of hypocrites may be the worst—the cant of criticism is the most tormenting!
    Laurence Sterne (1713–1768)

    Good criticism is very rare and always precious.
    Ralph Waldo Emerson (1803–1882)