In mathematics, the maximum modulus principle in complex analysis states that if f is a holomorphic function, then the modulus cannot exhibit a true local maximum that is properly within the domain of f.
In other words, either f is a constant function, or, for any point z0 inside the domain of f there exist other points arbitrarily close to z0 at which |f | takes larger values.
Read more about Maximum Modulus Principle: Formal Statement, Sketch of The Proof, Physical Interpretation, Applications
Famous quotes containing the words maximum and/or principle:
“Only at his maximum does an individual surpass all his derivative elements, and become purely himself. And most people never get there. In his own pure individuality a man surpasses his father and mother, and is utterly unknown to them.”
—D.H. (David Herbert)
“To invent without scruple a new principle to every new phenomenon, instead of adapting it to the old; to overload our hypothesis with a variety of this kind, are certain proofs that none of these principles is the just one, and that we only desire, by a number of falsehoods, to cover our ignorance of the truth.”
—David Hume (17111776)