Matrix Ring - Structure

Structure

  • The matrix ring Mn(R) can be identified with the ring of endomorphisms of the free R-module of rank n, Mn(R) ≅ EndR(Rn). The procedure for matrix multiplication can be traced back to compositions of endomorphisms in this endomorphism ring.
  • The ring Mn(D) over a division ring D is an Artinian simple ring, a special type of semisimple ring. The rings and are not simple and not Artinian if the set is infinite, however they are still full linear rings.
  • In general, every semisimple ring is isomorphic to a finite direct product of full matrix rings over division rings, which may have differing division rings and differing sizes. This classification is given by the Artin–Wedderburn theorem.
  • There is a one-to-one correspondence between the two-sided ideals of Mn(R) and the two-sided ideals of R. Namely, for each ideal I of R, the set of all n×n matrices with entries in I is an ideal of Mn(R), and each ideal of Mn(R) arises in this way. This implies that Mn(R) is simple if and only if R is simple. For n ≥ 2, not every left ideal or right ideal of Mn(R) arises by the previous construction from a left ideal or a right ideal in R. For example, the set of matrices whose columns with indices 2 through n are all zero forms a left ideal in Mn(R).
  • The previous ideal correspondence actually arises from the fact that the rings R and Mn(R) are Morita equivalent. Roughly speaking, this means that the category of left R modules and the category of left Mn(R) modules are very similar. Because of this, there is a natural bijective correspondence between the isomorphism classes of the left R-modules and the left Mn(R)-modules, and between the isomorphism classes of the left ideals of R and Mn(R). Identical statements hold for right modules and right ideals. Through Morita equivalence, Mn(R) can inherit any properties of R which are Morita invariant, such as being simple, Artinian, Noetherian, prime and numerous other properties as given in the Morita equivalence article.

Read more about this topic:  Matrix Ring

Famous quotes containing the word structure:

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.
    Donald Davidson (b. 1917)

    Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.
    Germaine Greer (b. 1939)