Definition
The probability density function for the random matrix X (n × p) that follows the matrix normal distribution has the form:
where M is n × p, Ω is p × p and Σ is n × n. There are several ways to define the two covariance matrices. One possibility is
where c is a constant which depends on Σ and ensures appropriate power normalization.
The matrix normal is related to the multivariate normal distribution in the following way:
if and only if
where denotes the Kronecker product and denotes the vectorization of .
Read more about this topic: Matrix Normal Distribution
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)