Mathematical Singularity
In mathematics, a singularity is in general a point at which a given mathematical object is not defined, or a point of an exceptional set where it fails to be well-behaved in some particular way, such as differentiability. See Singularity theory for general discussion of the geometric theory, which only covers some aspects.
For example, the function
on the real line has a singularity at x = 0, where it seems to "explode" to ±∞ and is not defined. The function g(x) = |x| (see absolute value) also has a singularity at x = 0, since it is not differentiable there. Similarly, the graph defined by y2 = x also has a singularity at (0,0), this time because it has a "corner" (vertical tangent) at that point.
The algebraic set defined by in the (x, y) coordinate system has a singularity (singular point) at (0, 0) because it does not admit a tangent there.
Read more about Mathematical Singularity: Real Analysis, Complex Analysis, Finite-time Singularity, Algebraic Geometry and Commutative Algebra
Famous quotes containing the words mathematical and/or singularity:
“An accurate charting of the American womans progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of timebut like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.”
—Susan Faludi (20th century)
“Losing faith in your own singularity is the start of wisdom, I suppose; also the first announcement of death.”
—Peter Conrad (b. 1948)