Mathematical Singularity

Mathematical Singularity

In mathematics, a singularity is in general a point at which a given mathematical object is not defined, or a point of an exceptional set where it fails to be well-behaved in some particular way, such as differentiability. See Singularity theory for general discussion of the geometric theory, which only covers some aspects.

For example, the function

on the real line has a singularity at x = 0, where it seems to "explode" to ±∞ and is not defined. The function g(x) = |x| (see absolute value) also has a singularity at x = 0, since it is not differentiable there. Similarly, the graph defined by y2 = x also has a singularity at (0,0), this time because it has a "corner" (vertical tangent) at that point.

The algebraic set defined by in the (x, y) coordinate system has a singularity (singular point) at (0, 0) because it does not admit a tangent there.

Read more about Mathematical Singularity:  Real Analysis, Complex Analysis, Finite-time Singularity, Algebraic Geometry and Commutative Algebra

Famous quotes containing the words mathematical and/or singularity:

    As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.
    Blaise Pascal (1623–1662)

    Losing faith in your own singularity is the start of wisdom, I suppose; also the first announcement of death.
    Peter Conrad (b. 1948)