Mathematical Logic - Formal Logical Systems

Formal Logical Systems

At its core, mathematical logic deals with mathematical concepts expressed using formal logical systems. These systems, though they differ in many details, share the common property of considering only expressions in a fixed formal language, or signature. The systems of propositional logic and first-order logic are the most widely studied today, because of their applicability to foundations of mathematics and because of their desirable proof-theoretic properties. Stronger classical logics such as second-order logic or infinitary logic are also studied, along with nonclassical logics such as intuitionistic logic.

Read more about this topic:  Mathematical Logic

Famous quotes containing the words formal, logical and/or systems:

    This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. It’s no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.
    Leontine Young (20th century)

    The truth is, that common-sense, or thought as it first emerges above the level of the narrowly practical, is deeply imbued with that bad logical quality to which the epithet metaphysical is commonly applied; and nothing can clear it up but a severe course of logic.
    Charles Sanders Peirce (1839–1914)

    People stress the violence. That’s the smallest part of it. Football is brutal only from a distance. In the middle of it there’s a calm, a tranquility. The players accept pain. There’s a sense of order even at the end of a running play with bodies stewn everywhere. When the systems interlock, there’s a satisfaction to the game that can’t be duplicated. There’s a harmony.
    Don Delillo (b. 1926)