Formal Logical Systems
At its core, mathematical logic deals with mathematical concepts expressed using formal logical systems. These systems, though they differ in many details, share the common property of considering only expressions in a fixed formal language, or signature. The systems of propositional logic and first-order logic are the most widely studied today, because of their applicability to foundations of mathematics and because of their desirable proof-theoretic properties. Stronger classical logics such as second-order logic or infinitary logic are also studied, along with nonclassical logics such as intuitionistic logic.
Read more about this topic: Mathematical Logic
Famous quotes containing the words formal, logical and/or systems:
“The formal Washington dinner party has all the spontaneity of a Japanese imperial funeral.”
—Simon Hoggart (b. 1946)
“Opera, next to Gothic architecture, is one of the strangest inventions of Western man. It could not have been foreseen by any logical process.”
—Kenneth MacKenzie Clark, Baron of Saltwood (19031983)
“Our little systems have their day;
They have their day and cease to be:
They are but broken lights of thee,
And thou, O Lord, art more than they.”
—Alfred Tennyson (18091892)