Formal Logical Systems
At its core, mathematical logic deals with mathematical concepts expressed using formal logical systems. These systems, though they differ in many details, share the common property of considering only expressions in a fixed formal language, or signature. The systems of propositional logic and first-order logic are the most widely studied today, because of their applicability to foundations of mathematics and because of their desirable proof-theoretic properties. Stronger classical logics such as second-order logic or infinitary logic are also studied, along with nonclassical logics such as intuitionistic logic.
Read more about this topic: Mathematical Logic
Famous quotes containing the words formal, logical and/or systems:
“The spiritual kinship between Lincoln and Whitman was founded upon their Americanism, their essential Westernism. Whitman had grown up without much formal education; Lincoln had scarcely any education. One had become the notable poet of the day; one the orator of the Gettsyburg Address. It was inevitable that Whitman as a poet should turn with a feeling of kinship to Lincoln, and even without any association or contact feel that Lincoln was his.”
—Edgar Lee Masters (18691950)
“Opera, next to Gothic architecture, is one of the strangest inventions of Western man. It could not have been foreseen by any logical process.”
—Kenneth MacKenzie Clark, Baron of Saltwood (19031983)
“We have done scant justice to the reasonableness of cannibalism. There are in fact so many and such excellent motives possible to it that mankind has never been able to fit all of them into one universal scheme, and has accordingly contrived various diverse and contradictory systems the better to display its virtues.”
—Ruth Benedict (18871948)