Topological Spaces, Metric Spaces
The motivation for studying mathematical analysis in the wider context of topological or metric spaces is threefold:
- The same basic techniques have proved applicable to a wider class of problems (e.g., the study of function spaces).
- A greater understanding of analysis in more abstract spaces frequently proves to be directly applicable to classical problems. For example, in Fourier analysis, functions are expressed in terms of a certain infinite sum of trigonometric functions. Thus Fourier analysis might be used to decompose a sound into a unique combination of pure tones of various pitches. The "weights", or coefficients, of the terms in the Fourier expansion of a function can be thought of as components of a vector in an infinite dimensional space known as a Hilbert space. Study of functions defined in this more general setting thus provides a convenient method of deriving results about the way functions vary in space as well as time or, in more mathematical terms, partial differential equations, where this technique is known as separation of variables.
- The conditions needed to prove the particular result are stated more explicitly. The analyst then becomes more aware exactly what aspect of the assumption is needed to prove the theorem.
Read more about this topic: Mathematical Analysis
Famous quotes containing the word spaces:
“In any case, raw aggression is thought to be the peculiar province of men, as nurturing is the peculiar province of women.... The psychologist Erik Erikson discovered that, while little girls playing with blocks generally create pleasant interior spaces and attractive entrances, little boys are inclined to pile up the blocks as high as they can and then watch them fall down: the contemplation of ruins, Erikson observes, is a masculine specialty.”
—Joyce Carol Oates (b. 1938)