Consequences
Martin's axiom has a number of other interesting combinatorial, analytic and topological consequences:
- The union of k or fewer null sets in an atomless σ-finite Borel measure on a Polish space is null. In particular, the union of k or fewer subsets of R of Lebesgue measure 0 also has Lebesgue measure 0.
- A compact Hausdorff space X with |X| < 2k is sequentially compact, i.e., every sequence has a convergent subsequence.
- No non-principal ultrafilter on N has a base of cardinality < k.
- Equivalently for any x in βN\N we have χ(x) ≥ k, where χ is the character of x, and so χ(βN) ≥ k.
- MA implies that a product of ccc topological spaces is ccc (this in turn implies there are no Suslin lines).
- MA + ¬CH implies that there exists a Whitehead group that is not free; Shelah used this to show that the Whitehead problem is independent of ZFC.
Read more about this topic: Martin's Axiom
Famous quotes containing the word consequences:
“Every expansion of government in business means that government in order to protect itself from the political consequences of its errors and wrongs is driven irresistibly without peace to greater and greater control of the nations press and platform. Free speech does not live many hours after free industry and free commerce die.”
—Herbert Hoover (18741964)
“[As teenager], the trauma of near-misses and almost- consequences usually brings us to our senses. We finally come down someplace between our parents safety advice, which underestimates our ability, and our own unreasonable disregard for safety, which is our childlike wish for invulnerability. Our definition of acceptable risk becomes a product of our own experience.”
—Roger Gould (20th century)
“War is thus divine in itself, since it is a law of the world. War is divine through its consequences of a supernatural nature which are as much general as particular.... War is divine in the mysterious glory that surrounds it and in the no less inexplicable attraction that draws us to it.... War is divine by the manner in which it breaks out.”
—Joseph De Maistre (17531821)