Relation To Classical Logic
Logics are usually systems intended to codify rules for preserving some semantic property of propositions across transformations. In classical logic, this property is "truth." In a valid argument, the truth of the derived proposition is guaranteed if the premises are jointly true, because the application of valid steps preserves the property. However, that property doesn't have to be that of "truth"; instead, it can be some other concept.
Multi-valued logics are intended to preserve the property of designationhood (or being designated). Since there are more than two truth values, rules of inference may be intended to preserve more than just whichever corresponds (in the relevant sense) to truth. For example, in a three-valued logic, sometimes the two greatest truth-values (when they are represented as e.g. positive integers) are designated and the rules of inference preserve these values. Precisely, a valid argument will be such that the value of the premises taken jointly will always be less than or equal to the conclusion.
For example, the preserved property could be justification, the foundational concept of intuitionistic logic. Thus, a proposition is not true or false; instead, it is justified or flawed. A key difference between justification and truth, in this case, is that the law of excluded middle doesn't hold: a proposition that is not flawed is not necessarily justified; instead, it's only not proven that it's flawed. The key difference is the determinacy of the preserved property: One may prove that P is justified, that P is flawed, or be unable to prove either. A valid argument preserves justification across transformations, so a proposition derived from justified propositions is still justified. However, there are proofs in classical logic that depend upon the law of excluded middle; since that law is not usable under this scheme, there are propositions that cannot be proven that way.
Read more about this topic: Many-valued Logic
Famous quotes containing the words relation to, relation, classical and/or logic:
“Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning When are much more numerous than those beginning Where of If. As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.”
—William Harmon (b. 1938)
“You must realize that I was suffering from love and I knew him as intimately as I knew my own image in a mirror. In other words, I knew him only in relation to myself.”
—Angela Carter (19401992)
“Et in Arcadia ego.
[I too am in Arcadia.]”
—Anonymous, Anonymous.
Tomb inscription, appearing in classical paintings by Guercino and Poussin, among others. The words probably mean that even the most ideal earthly lives are mortal. Arcadia, a mountainous region in the central Peloponnese, Greece, was the rustic abode of Pan, depicted in literature and art as a land of innocence and ease, and was the title of Sir Philip Sidneys pastoral romance (1590)
“Our argument ... will result, not upon logic by itselfthough without logic we should never have got to this pointbut upon the fortunate contingent fact that people who would take this logically possible view, after they had really imagined themselves in the other mans position, are extremely rare.”
—Richard M. Hare (b. 1919)