Development of Domain Theory
Magnetic domain theory was developed by French physicist Pierre-Ernest Weiss who in 1906 suggested existence of magnetic domains in ferromagnets. He suggested that large number of atomic magnetic moments (typically 1012-1018) were aligned parallel. The direction of alignment varies from domain to domain in a more or less random manner although certain crystallographic axis may be preferred by the magnetic moments, called easy axes. Weiss still had to explain the reason for the spontaneous alignment of atomic moments within a ferromagnetic material, and he came up with the so-called Weiss mean field : he assumed that a given magnetic moment in a material experienced a very high effective magnetic field due to the magnetization of its neighbors. In the original Weiss theory the mean field was proportional to the bulk magnetization M, so that
where is the mean field constant. However this is not applicable to ferromagnets due to the variation of magnetization from domain to domain. In this case, the interaction field is
Where is the saturation magnetization at 0K.
Later, the quantum theory made it possible to understand the microscopic origin of the Weiss field. The exchange interaction between localized spins favored a parallel (in ferromagnets) or an anti-parallel (in anti-ferromagnets) state of neighboring magnetic moments.
Read more about this topic: Magnetic Domain
Famous quotes containing the words development of, development, domain and/or theory:
“Women, because of their colonial relationship to men, have to fight for their own independence. This fight for our own independence will lead to the growth and development of the revolutionary movement in this country. Only the independent woman can be truly effective in the larger revolutionary struggle.”
—Womens Liberation Workshop, Students for a Democratic Society, Radical political/social activist organization. Liberation of Women, in New Left Notes (July 10, 1967)
“I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.”
—Gottlob Frege (18481925)
“You are the harvest and not the reaper
And of your domain another is the keeper.”
—John Ashbery (b. 1927)
“It makes no sense to say what the objects of a theory are,
beyond saying how to interpret or reinterpret that theory in another.”
—Willard Van Orman Quine (b. 1908)