Machine Epsilon - Arithmetic Model

Arithmetic Model

Numerical analysis uses machine epsilon to study the effects of rounding error. The actual errors of machine arithmetic are far too complicated to be studied directly, so instead, the following simple model is used. The IEEE arithmetic standard says all floating point operations are done as if it were possible to perform the infinite-precision operation, and then, the result is rounded to a floating point number. Suppose (1), are floating point numbers, (2) is an arithmetic operation on floating point numbers such as addition or multiplication, and (3) is the infinite precision operation. According to the standard, the computer calculates:

By the meaning of machine epsilon, the relative error of the rounding is at most machine epsilon in magnitude, so:

where in absolute magnitude is at most or u. The books by Demmel and Higham in the references can be consulted to see how this model is used to analyze the errors of, say, Gaussian elimination.

Read more about this topic:  Machine Epsilon

Famous quotes containing the words arithmetic and/or model:

    ‘Tis no extravagant arithmetic to say, that for every ten jokes,—thou hast got an hundred enemies; and till thou hast gone on, and raised a swarm of wasps about thine ears, and art half stung to death by them, thou wilt never be convinced it is so.
    Laurence Sterne (1713–1768)

    When Titian was mixing brown madder,
    His model was posed up a ladder.
    Said Titian, “That position
    Calls for coition,”
    So he lept up the ladder and had her.
    Anonymous.