General Dimensions
The concept of the Lorentz group has a natural generalization to any spacetime dimension. Mathematically, the Lorentz group of n+1 dimensional Minkowski space is the group O(n,1) (or O(1,n)) of linear transformations of Rn+1 which preserve the quadratic form
Many of the properties of the Lorentz group in four dimensions (n=3) generalize straightforwardly to arbitrary n. For instance, the Lorentz group O(n,1) has four connected components, and it acts by conformal transformations on the celestial (n−1)-sphere in n+1 dimensional Minkowski space. The identity component SO+(n,1) is an SO(n)-bundle over hyperbolic n-space Hn.
The low dimensional cases n=1 and n=2 are often useful as "toy models" for the physical case n=3, while higher dimensional Lorentz groups are used in physical theories such as string theory which posit the existence of hidden dimensions. The Lorentz group O(n,1) is also the isometry group of n-dimensional de Sitter space dSn, which may be realized as the homogeneous space O(n,1)/O(n−1,1). In particular O(4,1) is the isometry group of the de Sitter universe dS4, a cosmological model.
Read more about this topic: Lorentz Group
Famous quotes containing the words general and/or dimensions:
“What is written without effort is in general read without pleasure.”
—Samuel Johnson (17091784)
“Is it true or false that Belfast is north of London? That the galaxy is the shape of a fried egg? That Beethoven was a drunkard? That Wellington won the battle of Waterloo? There are various degrees and dimensions of success in making statements: the statements fit the facts always more or less loosely, in different ways on different occasions for different intents and purposes.”
—J.L. (John Langshaw)