Long-lived Fission Product - LLFP Radioactivity Compared

LLFP Radioactivity Compared

In total, the other six LLFPs, in thermal reactor spent fuel, initially release only a bit more than 10% as much energy per unit time as Tc-99 for U-235 fission, or 25% as much for 65% U-235+35% Pu-239. About 1000 years after fuel use, radioactivity from the medium-lived fission products Cs-137 and Sr-90 drops below the level of radioactivity from Tc-99 or LLFPs in general. (Actinides, if not removed, will be emitting more radioactivity than either at this point.) By about 1 million years, Tc-99 radioactivity will have declined below that of Zr-93, though immobility of the latter means it is probably still a lesser hazard. By about 3 million years, Zr-93 decay energy will have declined below that of I-129.

Nuclear transmutation is under consideration as a disposal method, primarily for Tc-99 and I-129 as these both represent the greatest biohazards and have the greatest neutron capture cross sections, although transmutation is still slow compared to fission of actinides in a reactor. Transmutation has also been considered for Cs-135, but is almost certainly not worthwhile for the other LLFPs.

Read more about this topic:  Long-lived Fission Product

Famous quotes containing the word compared:

    The difference between human vision and the image perceived by the faceted eye of an insect may be compared with the difference between a half-tone block made with the very finest screen and the corresponding picture as represented by the very coarse screening used in common newspaper pictorial reproduction. The same comparison holds good between the way Gogol saw things and the way average readers and average writers see things.
    Vladimir Nabokov (1899–1977)